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Eciton burchelli are a unique species of army ants that demonstrate dis-
tinctive swarm behavior. We observe their reactions to different initial food
distributions in a simulated ant world and determine the stability of their
swarm patterns to perturbations and external factors. The first step is to re-
cover the swarm behavior observed in nature using the simplest behavioral
rules. Then we investigate the impact of disruptions to the pheromone trails
on the emergent behavior of ants through agent based simulations. The poor
vision of E. burchellimake pheromone trails a key element to the survival of
the colony.

Their are several scenarios for swarm pattern formation including a single
food source, multiple food sources, and perturbations to the multiple food
sources implemented by randomly placing barriers over established trails.
This is done through agent based simulations that allow us to visualize the
development of ant swarms.

In addition to the simulations, we propose a modified version of Fisher’s
Equation to demonstrate ant swarm behavior at the swarm front from a theoret-
ical point-of-view. The basic Fisher’s Equation has a traveling wave solution
that integrates the logistic growth and diffusion of the ants’ population den-
sity. We add a taxis and removal rate into the equation to include pheromone
trail drift and loss of population during a swarm. Taxis is due to ant attraction
to the food sources, and removal is due to death and deviation from the trail.
The equation we propose is:

du
dt

= ru(1−u)−ν1 +(α1 +β1u)
∂u
∂x

+D1
∂2u
∂x2 , (1)

whereu is the population density,t is time,D1 is the diffusion coefficient,r is
the intrinsic growth rate,α is the drifting velocity,β is the density dependent
taxis, andν1 is the removal rate. A solution to Equation 1 is shown in Figure
1, and we see that the population grows and drifts at the same time.

Analysis of the wave solutions to equation 1 yield a hopf bifurcation, cre-
ating a limit cycle that can collide into a homoclinic orbit, see Figure 2.

The question we will answer with the numerical simulations is whether
external factors, such as obstacles, affect pheromone trails and swarm pattern
formation. An agent-based model allows us to specify rules for individual ants
and their interactions with the environment and themselves. We first create
the simplest set of rules that will generate complex swarm patterns and then
monitor the impact of different environmental factors on these patterns. The
rules are as follows:

• Ants can move randomly with a large bias towards the forward direc-
tion.

• When searching for food, they exhibit a behavior called the rebound
effect. They explore forward several steps and if no food is found, they
will backtrack a few steps and possibly change direction.
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• If food is discovered, a large concentration of pheromone will be de-
posited to attract more ants.

• When returning with food, the ants lay a type of pheromone which
recruits other ants to gather more food. To avoid overcrowding, they
will branch out around the food source, consuming it more efficiently.

The three categories of simulations are: single food source, and multiple
food sources with or without obstacles added half way through the simulation.
Our benchmarks are the final population size (we run each simulation for 5
minutes) and the amount of food gathered. These benchmarks are independent
to density (how likely the ants are to spread out around the food source), but
highly dependent on the degree of randomness in ant movement. When they
have a high probability of turning, they stray off the pheromone trail and have
difficulty finding food. However, a certain amount of randomness is essential
to the discovery of alternate food sources since the main food source can run
out or the primary trail can get perturbed. They usually produce one main
swarm and a few sub-swarms with increased randomness.

Ant population with respect to randomness in en-
vironment with obstacles

Obstacles have a major impact on the population size of the ants, see Fig-
ure 3, and nearly causes extinction in many cases. However, in real life the
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ants can overcome most minor obstacles and establish new trails, but here we
assume obstacles are cannot be overcome and examples include destruction or
major alteration of the landscape or active interference. This is analogous to
human invasion of ant habitats and supports the need for conservation biology.

Modeling a natural phenomenon such as ant swarms with sophisticated
mathematical equations and advanced simulations provide a closer look as to
how things work. The analysis can be refined to the point of quantitatively
deriving the inner workings of a complex system such as an ant swarm. This
project enabled us to study localized behavior of a self-organizing species.

The two approaches, modified Fisher’s Equation and agent-based model-
ing, concentrate on separate parts of the army ant swarm patterns. The two
different forms of analysis provide various insights when studying the swarm
behaviors. The two methods applied produce a substantial amount of informa-
tion on the complexity of self-organizing systems. The approaches used can
be applied to other types of self-organizing systems such as bees, termites,
and fish. These studies lead to greater understanding of the systems, which
provides a window of reflection based on our own behavior.
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